Digits micro-model for accurate and secure transactions

Chirag Chhablani, Nikhita Sharma,Jordan Hosier,Vijay K. Gurbani

CoRR(2024)

引用 0|浏览0
暂无评分
摘要
Automatic Speech Recognition (ASR) systems are used in the financial domain to enhance the caller experience by enabling natural language understanding and facilitating efficient and intuitive interactions. Increasing use of ASR systems requires that such systems exhibit very low error rates. The predominant ASR models to collect numeric data are large, general-purpose commercial models – Google Speech-to-text (STT), or Amazon Transcribe – or open source (OpenAI's Whisper). Such ASR models are trained on hundreds of thousands of hours of audio data and require considerable resources to run. Despite recent progress large speech recognition models, we highlight the potential of smaller, specialized "micro" models. Such light models can be trained perform well on number recognition specific tasks, competing with general models like Whisper or Google STT while using less than 80 minutes of training time and occupying at least an order of less memory resources. Also, unlike larger speech recognition models, micro-models are trained on carefully selected and curated datasets, which makes them highly accurate, agile, and easy to retrain, while using low compute resources. We present our work on creating micro models for multi-digit number recognition that handle diverse speaking styles reflecting real-world pronunciation patterns. Our work contributes to domain-specific ASR models, improving digit recognition accuracy, and privacy of data. An added advantage, their low resource consumption allows them to be hosted on-premise, keeping private data local instead uploading to an external cloud. Our results indicate that our micro-model makes less errors than the best-of-breed commercial or open-source ASRs in recognizing digits (1.8 error rate of Whisper), and has a low memory footprint (0.66 GB VRAM for our model versus 11 GB VRAM for Whisper).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要