Modular Edge Analysis Reveals Chemotherapy-induced Brain Network Changes in Lung Cancer Patients.

Current medical imaging(2024)

引用 0|浏览11
暂无评分
摘要
BACKGROUND:Lung cancer patients with post-chemotherapy may have disconnected or weakened function connections within brain networks. OBJECTIVE:This study aimed to explore the abnormality of brain functional networks in lung cancer patients with post-chemotherapy by modular edge analysis. METHODS:Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed on 40 patients after chemotherapy, 40 patients before chemotherapy and 40 normal controls. Patients in all three groups were age and sex well-matched. Then, modular edge analysis was applied to assess brain functional network alterations. RESULTS:Post-chemotherapy patients had the worst MoCA scores among the three groups (p < 0.001). In intra-modular connections, compared with normal controls, the patients after chemotherapy had decreased connection strengths in the occipital lobe module (p < 0.05). Compared with the nonchemotherapy group, the patients after chemotherapy had decreased connection strengths in the subcortical module (p < 0.05). In inter-modular connections, compared with normal controls, the patients after chemotherapy had decreased connection strength in the frontal-temporal lobe modules (p < 0.05). Compared with the non-chemotherapy group, the patients after chemotherapy had decreased connection strength in the subcortical-temporal lobe modules (p < 0.05). CONCLUSION:The results reveal that chemotherapy can disrupt connections in brain functional networks. As far as we know, the use of modular edge analysis to report changes in brain functional brain networks associated with chemotherapy was rarely reported. Modular edge analysis may play a crucial part in predicting the clinical outcome for the patients after chemotherapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要