A novel Bi2S3 QD-based DPV/ECL synchronous dual-mode molecularly imprinted sensor for enrofloxacin detection in eggs.

Food chemistry(2024)

引用 0|浏览1
暂无评分
摘要
Herein, a novel electrochemiluminescence (ECL) and differential pulse voltammetry (DPV) dual-mode-based molecularly imprinted (MIP) sensor had been established for the detection of enrofloxacin (ENR) in eggs. Firstly, bismuth sulfide quantum dots (Bi2S3 QDs) as ECL luminophore were synthesized. Furthermore, a MIP film with ionic liquid (ILs), Bi2S3 QDs, and ENR was prepared via the electrochemical polymerization procedure on the electrode. As ENR was identified and captured by the imprinted cavities, the electron transfer pathway was blocked on the electrochemical interface, resulting in the decrease of both DPV signals and ECL signals. As a novel synchronous dual-mode sensing strategy, a pulsed voltage was applied to produce both the DPV signal and ECL signal simultaneously. The ECL and DPV response showed the good linear relationships with the concentration of ENR with the ranges of 0.5 Nm-25 μM and 5 nM-25 μΜ and the detection limits of 0.13 nM and 1.59 nM, respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要