External Field-Responsive Ternary Non-Noble Metal Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries

ADVANCED MATERIALS(2024)

引用 0|浏览13
暂无评分
摘要
Despite the increasing effort in advancing oxygen electrocatalysts for zinc-air batteries (ZABs), the performance development gradually reaches a plateau via only ameliorating the electrocatalyst materials. Herein, a new class of external field-responsive electrocatalyst comprising Ni0.5Mn0.5Fe2O4 stably dispersed on N-doped Ketjenblack (Ni0.5Mn0.5Fe2O4/N-KB) is developed via polymer-assisted strategy for practical ZABs. Briefly, the activity indicator Delta E is significantly decreased to 0.618 V upon photothermal assistance, far exceeding most reported electrocatalysts (generally >0.680 V). As a result, the photothermal electrocatalyst possesses comprehensive merits of excellent power density (319 mW cm(-2)), ultralong lifespan (5163 cycles at 25 mA cm(-2)), and outstanding rate performance (100 mA cm(-2)) for liquid ZABs, and superb temperature and deformation adaptability for flexible ZABs. Such improvement is attributed to the photothermal-heating-enabled synergy of promoted electrical conductivity, reactant-molecule motion, active area, and surface reconstruction, as revealed by operando Raman and simulation. The findings open vast possibilities toward more-energy-efficient energy applications.
更多
查看译文
关键词
external field-responsiveness,low-temperature adaptability,operando Raman,surface reconstruction,zinc-air batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要