A novel multiscale framework for delineating cancer evolution from subclonal compositions.

Journal of theoretical biology(2024)

引用 0|浏览1
暂无评分
摘要
OBJECTIVE:Owing to the heterogeneity in the evolution of cancer, distinguishing between diverse growth patterns and predicting long-term outcomes based on short-term measurements poses a great challenge. METHODS:A novel multiscale framework is proposed to unravel the connections between the population dynamics of cancer growth (i.e., aggressive, bounded, and indolent) and the cellular-subclonal dynamics of cancer evolution. This framework employs the non-negative lasso (NN-LASSO) algorithm to forge a link between an ordinary differential equation (ODE)-based population model and a cellular evolution model. RESULTS:The findings of our current work not only affirm the impact of subclonal composition on growth dynamics but also identify two significant subclones within heterogeneous growth patterns. Moreover, the subclonal compositions at the initial time are able to accurately discriminate diverse growth patterns through a machine learning algorithm. CONCLUSION:The proposed multiscale framework successfully delineates the intricate landscape of cancer evolution, bridging the gap between long-term growth dynamics and short-term measurements, both in simulated and real-world data. This methodology provides a novel avenue for thorough exploration into the realm of cancer evolution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要