谷歌浏览器插件
订阅小程序
在清言上使用

Bio-orthogonal Glycan Imaging of Culture Cells and Whole Animal C. elegans with Expansion Microscopy

bioRxiv the preprint server for biology(2024)

引用 0|浏览6
暂无评分
摘要
Complex carbohydrates called glycans play crucial roles in the regulation of cell and tissue physiology, but how glycans map to nanoscale anatomical features must still be resolved. Here, we present the first nanoscale map of mucin-type O -glycans throughout the entirety of the Caenorhabditis elegans model organism. We construct a library of multifunctional linkers to probe and anchor metabolically labelled glycans in expansion microscopy (ExM), an imaging modality that overcomes the diffraction limit of conventional optical microscopes through the physical expansion of samples embedded in a polyelectrolyte gel matrix. A flexible strategy is demonstrated for the chemical synthesis of linkers with a broad inventory of bio-orthogonal functional groups, fluorophores, anchorage chemistries, and linker arms. Employing C. elegans as a test bed, we resolve metabolically labelled O -glycans on the gut microvilli and other nanoscale anatomical features using our ExM reagents and optimized protocols. We use transmission electron microscopy images of C. elegans nano-anatomy as ground truth data to validate the fidelity and isotropy of gel expansion. We construct whole organism maps of C. elegans O -glycosylation in the first larval stage and identify O -glycan “hotspots” in unexpected anatomical locations, including the body wall furrows. Beyond C. elegans , we provide validated ExM protocols for nanoscale imaging of metabolically labelled glycans on cultured mammalian cells. Together, our results suggest the broad applicability of the multifunctional reagents for imaging glycans and other metabolically labelled biomolecules at enhanced resolutions with ExM. ![Figure][1] ### Competing Interest Statement The authors have declared no competing interest. [1]: pending:yes
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要