Dipole-multipole plasmonic coupling between gold nanorods and titanium nitride nanoparticles for enhanced photothermal conversion

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2024)

引用 0|浏览3
暂无评分
摘要
The plasmonic photothermal conversion efficiency can be enhanced by coupling among plasmonic atoms or plasmonic molecules due to the amplified local electric field and extinction cross-section. Recently, it has been theoretically proved that hybridization between dipolar modes and higher order modes can provide higher enhancement than that among dipolar modes in terms of both near- and far-field, which may lead to a higher photothermal conversion rate. In this work, we systematically investigated the photothermal conversion enhancement of plasmonic coupling between a dipolar mode of a titanium nitride nanoparticle (TiN NP) and a higher order mode of a gold nanorod (Au NR), which was compared to that of coupling among TiN NPs' dipolar modes. We evaluated the photothermal conversion efficiency of dipole-dipole coupling and dipole-multipole coupling in the nanocluster under the illumination of a monochromatic laser of 808 nm wavelength and simulated solar light, respectively. Both experimental tests and numerical simulations suggested that the plasmonic dipole-multipole coupling exhibited higher enhancement in photothermal conversion than dipole-dipole plasmonic coupling. Dipole-multipole plasmonic coupling outperforms dipole-dipole plasmonic coupling in the photothermal conversion process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要