Ferromagnetic topological states in monolayer vanadium halides toward heterostructure applications

APL MATERIALS(2024)

引用 0|浏览2
暂无评分
摘要
Topological states in two-dimensional materials have garnered significant research attention in recent years, particularly those with intrinsic magnetic orderings, which hold great potential for spintronic applications. Through theoretical calculations, we unveil the superior band topology of monolayer vanadium trihalides, with a specific focus on V2Cl6. These two-dimensional compounds exhibit a half-metallic ferromagnetic ground state, showcasing excellent thermodynamic and mechanical stabilities. Remarkably, clean band crossings with complete spin polarization manifest as phase transitions between Weyl semimetal states and quantum anomalous Hall states under different magnetization directions, and both topological phases yield prominent edge states. Furthermore, Monte Carlo simulations estimate a high Curie temperature of up to 381.3 K, suggesting the potential for spintronic development above room temperature. Taking a step forward, we construct two heterojunctions utilizing selected substrates, MoS2 and h-BN. These substrates not only facilitate a suitable lattice integration but also have a negligible impact on the half-metallicity and band topology. These findings lay the groundwork for exploring practical applications of two-dimensional ferromagnetic topological states. Importantly, the presented material candidates have the potential to accelerate the development of room temperature applications and integrate spintronic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要