Anomalous entropy-driven kinetics of dislocation nucleation

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
The kinetics of dislocation reactions, such as dislocation multiplication, controls the plastic deformation in crystals beyond their elastic limit, therefore critical mechanisms in a number of applications in materials science. We present a series of large-scale molecular dynamics simulations that shows that one such type of reactions, the nucleation of dislocation at free surfaces, exhibit extremely unconventional kinetics, including unexpectedly large nucleation rates under compression, very strong entropic stabilization under tension, as well as strong non-Arrhenius behavior. These unusual kinetics are quantitatively rationalized using a variational transition state theory approach coupled with an efficient numerical scheme for the estimation of vibrational entropy changes. These results highlight the need for a variational treatment of the kinetics to quantitatively capture dislocation reaction kinetics, especially at low-to-moderate strains where large deformations are required to activate reactions. These observations suggest possible explanations to previously observed unconventional deformation kinetics in both molecular dynamics simulations and experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要