Single-image phase retrieval for off-the-shelf Zernike phase-contrast microscopes

OPTICS EXPRESS(2024)

引用 0|浏览0
暂无评分
摘要
Quantitative phase imaging (QPI), such as digital holography, is considered a promising tool in the field of life science due to its noninvasive and quantitative visualization capabilities without the need for fluorescence labeling. However, the popularity of QPI systems is limited due to the cost and complexity of their hardware. In contrast, Zernike phase-contrast microscopy (ZPM) has been widely used in practical scenarios but has not been categorized as QPI, owing to halo and shade-off artifacts and the weak phase condition. Here, we present a single -image phase retrieval method for ZPM that addresses these issues without requiring hardware modifications. By employing a rigorous physical model of ZPM and a gradient descent algorithm for its inversion, we achieve single-shot QPI with an off-the-shelf ZPM system. Our approach is validated in simulations and experiments, demonstrating QPI of a polymer microbead and biological cells. The quantitative nature of our method for single -cell imaging is confirmed through comparisons with observations from an established QPI technique conducted through digital holography. This study paves the way for transforming non-QPI ZPM systems into QPI systems. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要