Fast storage of photons in cavity-assisted quantum memories

Johann S. Kollath-Bönig,Luca Dellantonio,Luigi Giannelli,Tom Schmit,Giovanna Morigi, Anders S. Sørensen

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Ideal photonic quantum memories can store arbitrary pulses of light with unit efficiency. This requires operating in the adiabatic regime, where pulses have a duration much longer than the bandwidth of the memory. In the non-adiabatic regime of short pulses, memories are therefore imperfect, and information is always lost. We theoretically investigate the bandwidth limitations for setups based on individual atoms, or ensembles thereof, confined inside optical cavities. We identify an effective strategy for optimizing the efficiencies of the storage and retrieval process regardless of the duration of the pulses. Our protocol is derived almost completely analytically and attains efficiencies better than or comparable to those obtained by numerical optimization. Furthermore, our results provide an improved understanding of the performance of quantum memories in several regimes. When considering pulses defined on an infinite time interval, the shapes can be divided into two categories, depending on their asymptotic behaviours. If the intensity of the pulse increases with time slower than or as an exponential function, then the storage efficiency is only limited by the pulse width. For pulses defined on a finite interval, on the other hand, the efficiency is determined by the shape at the beginning of the storage or, correspondingly, at the end of the retrieval process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要