Formation of long-period post-common-envelope binaries II. Explaining the self-lensing binary KOI 3278

arxiv(2024)

引用 0|浏览7
暂无评分
摘要
The vast majority of close binaries containing a compact object form through common-envelope (CE) evolution. Despite this importance, we struggle to even understand the energy budget of CE evolution. For decades, observed long-period post-CE binaries have been interpreted as evidence for additional energies to contribute during CE evolution. We have recently shown that this argument is based on simplified assumptions for all long-period post-CE binaries containing massive white dwarfs. The only remaining post-CE binary star that has been claimed to require contributions from additional energy sources to understand its formation is KOI 3278. Here we address in detail the potential evolutionary history of KOI 3278. In particular, we investigated whether extra energy sources, such as recombination energy, are indeed required to explain its existence. We used the 1D stellar evolution code MESA to carry out binary evolution simulations and searched for potential formation pathways for KOI 3278 that are able to explain its observed properties. We found that KOI 3278 can be explained if the white dwarf progenitor filled its Roche lobe during a helium shell flash. In this case, the orbital period of KOI 3278 can be reproduced if the CE binding energy is calculated taking into account gravitational energy and thermodynamic internal energy. While the CE evolution that led to the formation of KOI 3278 must have been efficient, that is, most of the available orbital energy must have been used to unbind the CE, recombination energy is not required. We conclude that currently not a single observed post-CE binary requires to assume energy sources other than gravitational and thermodynamic energy to contribute to CE evolution. KOI 3278, however, remains an intriguing post-CE binary as, unlike its siblings, understanding its existence requires highly efficient CE ejection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要