Tunable high-temperature tunneling magnetoresistance in all-van der Waals antiferromagnet/semiconductor/ferromagnet junctions

Advanced Functional Materials(2024)

引用 0|浏览23
暂无评分
摘要
Magnetic tunnel junctions (MTJs) have been widely applied in spintronic devices for efficient spin detection through the imbalance of spin polarization at the Fermi level. The van der Waals (vdW) nature of two-dimensional (2D) magnets with atomic-scale flat surfaces and negligible surface roughness greatly facilitates the development of MTJs, yet is only restricted to ferromagnets. Here, we report A-type antiferromagnetism in 2D vdW single-crystal (Fe0.8Co0.2)3GaTe2 with TN 203 K in bulk and  185 K in 9-nm nanosheets. The metallic nature and out-of-plane magnetic anisotropy make it a suitable candidate for MTJ electrodes. By constructing heterostructures based on (Fe0.8Co0.2)3GaTe2/WSe2/Fe3GaTe2, we obtain a large tunneling magnetoresistance (TMR) ratio of 180 near-room temperature 280 K. Moreover, the TMR is tunable by the electric field down to 1 mV, implying the potential in energy-efficient spintronic devices. Our work provides new opportunities for 2D antiferromagnetic spintronics and quantum devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要