Optimal control approach for moving bottom detection in one-dimensional shallow waters by surface measurements

CoRR(2024)

引用 0|浏览4
暂无评分
摘要
We consider the Boussinesq-Peregrine (BP) system as described by Lannes [Lannes, D. (2013). The water waves problem: mathematical analysis and asymptotics (Vol. 188). American Mathematical Soc.], within the shallow water regime, and study the inverse problem of determining the time and space variations of the channel bottom profile, from measurements of the wave profile and its velocity on the free surface. A well-posedness result within a Sobolev framework for (BP), considering a time dependent bottom, is presented. Then, the inverse problem is reformulated as a nonlinear PDEconstrained optimization one. An existence result of the minimum, under constraints on the admissible set of bottoms, is presented. Moreover, an implementation of the gradient descent approach, via the adjoint method, is considered. For solving numerically both, the forward (BP) and its adjoint system, we derive a universal and low-dissipation scheme, which contains non-conservative products. The scheme is based on the FORCE-α method proposed in [Toro, E. F., Saggiorato, B., Tokareva, S., and Hidalgo, A. (2020). Low-dissipation centred schemes for hyperbolic equations in conservative and non-conservative form. Journal of Computational Physics, 416, 109545]. Finally, we implement this methodology to recover three different bottom profiles; a smooth bottom, a discontinuous one, and a continuous profile with a large gradient. We compare with two classical discretizations for (BP) and the adjoint system. These results corroborate the effectiveness of the proposed methodology to recover bottom profiles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要