Proximity labeling proteomics reveals Kv1.3 potassium channel immune interactors in microglia.

biorxiv(2024)

引用 0|浏览7
暂无评分
摘要
Microglia are the resident immune cells of the brain and regulate the brain's inflammatory state. In neurodegenerative diseases, microglia transition from a homeostatic state to a state referred to as disease associated microglia (DAM). DAM express higher levels of proinflammatory signaling, like STAT1 and TLR2, and show transitions in mitochondrial activity toward a more glycolytic response. Inhibition of Kv1.3 decreases the proinflammatory signature of DAM, though how Kv1.3 influences the response is unknown. Our goal was to establish the potential proteins interacting with Kv1.3 during the TLR4-mendiated transition to DAM. We utilized TurboID, a biotin ligase, fused to Kv1.3 to evaluate the potential interacting proteins with Kv1.3 via mass spectrometry in BV-2 microglia during an immune response. Electrophysiology, western blots, and flow cytometry were used to evaluate Kv1.3 channel presence and TurboID biotinylation activity. We hypothesized that Kv1.3 contains domain-specific interactors that vary during an TLR4-induced inflammatory response, some of which are dependent on the PDZ-binding domain on the C-terminus. We determined that the N-terminus of Kv1.3 is responsible for trafficking Kv1.3 to the cell surface and mitochondria (i.e. NUNDC, TIMM50). The C-terminus interacts with immune signaling proteins in an LPS-induced inflammatory response (i.e. STAT1, TLR2, and C3). There are 70 proteins that rely on the c-terminal PDZ-binding domain to interact with Kv1.3 (i.e. ND3, Snx3, and Sun1). Overall, we highlight that the Kv1.3 potassium channel functions beyond outward flux of potassium in an inflammatory context and contributes to activity of key immune signaling proteins, such as STAT1 and C3. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要