New perspectives of Hall effects from first-principles calculations

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
The Hall effect has been a fascinating topic ever since its discovery, resulting in exploration of entire family of this intriguing phenomena. As the field of topology develops and novel materials emerge endlessly over the past few decades, researchers have been passionately debating the origins of various Hall effects. Differentiating between the ordinary Hall effect and extraordinary transport properties, like the anomalous Hall effect, can be quite challenging, especially in high-conductivity materials, including those with topological origins. In this study, we conduct a systematic and comprehensive analysis of Hall effects by combining the semiclassical Boltzmann transport theory with first principles calculations within the relaxation time approximation. We first highlight some striking similarities between the ordinary Hall effect and certain anomalous Hall effects, such as nonlinear dependency on magnetic field and potential sign reversal of the Hall resistivity. We then demonstrate that the Hall resistivity can be scaled with temperature and magnetic field as well, analogue to the Kohler's rule which scales the longitudinal resistivity under the relaxation time approximation. We then apply this Kohler's rule for Hall resistivity to two representative materials: ZrSiS and PtTe_2 with reasonable agreement with experimental measurement. Moreover, our methodology has been proven to be applicable to the planar Hall effects of bismuth, of perfect agreements with experimental observations. Our research on the scaling behavior of Hall resistivity addresses a significant gap in this field and provides a comprehensive framework for a deeper understanding of the Hall resistance family, and thus has potential to propel the field forward and spark further investigations into the fascinating world of Hall effects.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要