3D code for MAgneto-Thermal evolution in Isolated Neutron Stars, MATINS: thermal evolution and lightcurves

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
The thermal evolution of isolated neutron stars is a key element in unraveling their internal structure and composition and establishing evolutionary connections among different observational subclasses. Previous studies have predominantly focused on one-dimensional or axisymmetric two-dimensional models. In this study, we present the thermal evolution component of the novel three-dimensional magnetothermal code MATINS (MAgneto-Thermal evolution of Isolated Neutron Star). MATINS employs a finite volume scheme and integrates a realistic background structure, along with state-of-the-art microphysical calculations for the conductivities, neutrino emissivities, heat capacity, and superfluid gap models. This paper outlines the methodology employed to solve the thermal evolution equations in MATINS, along with the microphysical implementation which is essential for the thermal component. We test the accuracy of the code and present simulations with non-evolving magnetic fields of different topologies to produce temperature maps of the neutron star surface. Additionally, for a specific magnetic field topology, we show one fully coupled evolution of magnetic field and temperature. Subsequently, we use a ray-tracing code to link the neutron star surface temperature maps obtained by MATINS with the phase-resolved spectra and pulsed profiles that would be detected by distant observers. This study, together with our previous article focused on the magnetic formalism, presents in detail the most advanced evolutionary code for isolated neutron stars, with the aim of comparison with their timing properties, thermal luminosities and the associated X-ray light curves.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要