Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: a comparative analysis

INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING(2024)

引用 1|浏览1
暂无评分
摘要
The aerospace community widely uses difficult-to-cut materials, such as titanium alloys, high-temperature alloys, metal/ceramic/polymer matrix composites, hard and brittle materials, and geometrically complex components, such as thin-walled structures, microchannels, and complex surfaces. Mechanical machining is the main material removal process for the vast majority of aerospace components. However, many problems exist, including severe and rapid tool wear, low machining efficiency, and poor surface integrity. Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies (vibration, laser, electricity, etc) to improve the machinability of local materials and decrease the burden of mechanical machining. This provides a feasible and promising method to improve the material removal rate and surface quality, reduce process forces, and prolong tool life. However, systematic reviews of this technology are lacking with respect to the current research status and development direction. This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community. In addition, this paper focuses on the processing principles, material responses under nontraditional energy, resultant forces and temperatures, material removal mechanisms, and applications of these processes, including vibration-, laser-, electric-, magnetic-, chemical-, advanced coolant-, and hybrid nontraditional energy-assisted mechanical machining. Finally, a comprehensive summary of the principles, advantages, and limitations of each hybrid process is provided, and future perspectives on forward design, device development, and sustainability of nontraditional energy-assisted mechanical machining processes are discussed. A topical review of nontraditional energy-assisted mechanical machining is introduced.The advantages and limitations of each hybrid machining process are addressed.Perspectives on forward design, device development, and sustainability are discussed.
更多
查看译文
关键词
difficult-to-cut materials,geometrically complex components,nontraditional energy,mechanical machining,aerospace community
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要