Unveiling the Antimicrobial and Larvicidal Potential of Butyrolactones and Orsellinic Acid Derivatives from the Morus alba-derived Fungus Aspergillus terreus via Integrated In vitro and In silico Approaches

CHEMISTRY & BIODIVERSITY(2024)

引用 0|浏览8
暂无评分
摘要
The emergence of multi-drug-resistant microbial strains spurred the search for antimicrobial agents; as a result, two distinct approaches were combined: four in vitro studies and four corresponding molecular docking investigations. Antituberculosis, anti-methicillin-resistant Staphylococcus aureus (anti-MRSA), antifungal, and larvicidal activities of the crude extract, two fractions, and seven isolated compounds from Aspergillus terreus derived from Morus alba roots were explored. The isolated compounds (5 butyrolactones and 2 orsellinic acid derivatives) showed potent to moderate antitubercular activity with MIC values ranging from 1.95 to 62.5 mu g/mL (compared to isoniazid, 0.24 mu g/mL) and promising anti-MRSA potential with inhibition zone diameters ranging from 8 to 25 mm. Additionally, the in silico study proved that the isolated compounds bind to the two corresponding proteins' active sites with high to moderate -(C-Docker interaction energies) and stable interactions. The isolated compounds displayed antifungal activities against different fungal strains at diverse degrees of activity, among them compound (8"S,9")-dihydroxy-dihydrobutyrolactone I eliciting the best antifungal activity. Meanwhile, all isolated compounds, fractions, and the crude extract demonstrated extremely selective potent to moderate activity against Cryptococcus neoformans. The isolated five butyrolactone derivatives could develop potential mosquito larvicidal agents as a result of promising docking outcomes in the larval enzyme carboxylesterase.
更多
查看译文
关键词
Associated fungus Aspergillus terreus,Antituberculosis,Anti-MRSA,Antifungal,Insecticidal,Molecular docking,Natural products
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要