Single-layer semiconductor-decorated flexible 2D protein nanosheets by engineered anchoring for efficient photocatalytic hydrogen production

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES(2024)

引用 0|浏览8
暂无评分
摘要
Protein self-assembly can be accurately manipulated to form ordered nanostructures through various supramolecular forces. This strategy is expected to make significant breakthroughs in the field of new biomimetic functional materials. Specifically, the construction of photocatalytic systems on two-dimensional (2D) flexible protein nanosheets meets a great challenge. We introduce a synthetic methodology for creating single-layer semiconductor-decorated protein 2D materials under mild conditions with enhanced light-driven hydrogen production. This approach employs a bioengineered green fluorescent protein (E4P) with the addition of a Cdbinding peptide, enabling precise control of the assembly of CdS quantum dots (QDs) on the protein's surface. Consequently, we obtained 4.3 nm-thin single-layer 2D protein nanosheets with substantial surface areas ideal for accommodating CdS QDs. By orthogonal incorporation of metal-binding peptides and supramolecular coordination, significantly enhancing the overall photocatalytic efficiency. Our findings demonstrate the potential for stable and efficient hydrogen production, highlighting the adaptability and biocompatibility of protein scaffolds for photocatalysis.
更多
查看译文
关键词
2D materials,Protein 2D materials,Protein assembly,H2 production
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要