谷歌浏览器插件
订阅小程序
在清言上使用

Empirical Risk-aware Machine Learning on Trojan-Horse Detection for Trusted Quantum Key Distribution Networks

arxiv(2024)

引用 0|浏览6
暂无评分
摘要
Quantum key distribution (QKD) is a cryptographic technique that leverages principles of quantum mechanics to offer extremely high levels of data security during transmission. It is well acknowledged for its capacity to accomplish provable security. However, the existence of a gap between theoretical concepts and practical implementation has raised concerns about the trustworthiness of QKD networks. In order to mitigate this disparity, we propose the implementation of risk-aware machine learning techniques that present risk analysis for Trojan-horse attacks over the time-variant quantum channel. The trust condition presented in this study aims to evaluate the offline assessment of safety assurance by comparing the risk levels between the recommended safety borderline. This assessment is based on the risk analysis conducted. Furthermore, the proposed trustworthy QKD scenario demonstrates its numerical findings with the assistance of a state-of-the-art point-to-point QKD device, which operates over optical quantum channels spanning distances of 1m, 1km, and 30km. Based on the results from the experimental evaluation of a 30km optical connection, it can be concluded that the QKD device provided prior information to the proposed learner during the non-existence of Eve's attack. According to the optimal classifier, the defensive gate offered by our learner possesses the capability to identify any latent Eve attacks, hence effectively mitigating the risk of potential vulnerabilities. The Eve detection probability is provably bound for our trustworthy QKD scenario.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要