Chrome Extension
WeChat Mini Program
Use on ChatGLM

Co-immobilizing laccase-mediator system by in-situ synthesis of MOF in PVA hydrogels for enhanced laccase stability and dye decolorization efficiency.

Journal of environmental management(2024)

Cited 1|Views15
No score
Abstract
The laccase mediator system (LMS) with a broad substrate range has attracted much attention as an efficient approach for water remediation. However, the practical application of LMS is limited due to their high solubility, poor stability and low reusability. Herein, the bimetallic Cu/ZIFs encapsulated laccase was in-situ grown in poly(vinyl alcohol) (PVA) polymer matrix. The PVA-Lac@Cu/ZIFs hydrogel was formed via one freeze-thawing cycle, and its catalytic stability was significantly improved. The mediator was further co-immobilized on the hydrogel, and this hierarchically co-immobilized ABTS/PVA-Lac@Cu/ZIFs hydrogel could avoid the continuous oxidation reaction between laccase and redox mediators. The co-immobilized LMS biocatalyst was used to degrade malachite green (MG), and the degradation rate was up to 100 % within 4 h. More importantly, the LMS could be recycled synchronously from the dye solutions and reused to degrade MG multiple times. The degradation rate remained above 69.4 % after five cycles. Furthermore, the intermediate products were detected via liquid chromatography-mass spectrometry, and the potential degradation pathways were proposed. This study demonstrated the significant potential of utilizing the MOF nanocrystals and hydrogel as a carrier for co-immobilized LMS, and the effective reuse of both laccase and mediator was promising for laccase application in wastewater treatment.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined