Scarcity of fixed carbon transfer in a model microbial phototroph-heterotroph interaction.

Sunnyjoy Dupuis, Usha F Lingappa,Xavier Mayali, Eve S Sindermann, Jordan L Chastain,Peter K Weber,Rhona Stuart,Sabeeha S Merchant

bioRxiv : the preprint server for biology(2024)

引用 0|浏览2
暂无评分
摘要
While the green alga Chlamydomonas reinhardtii has long served as a reference organism, few studies have interrogated its role as a primary producer in microbial interactions. Here, we quantitatively investigated C. reinhardtii's capacity to support a heterotrophic microbe using the established coculture system with Mesorhizobium japonicum, a vitamin B12-producing α-proteobacterium. Using stable isotope probing and nanoscale secondary ion mass spectrometry (nanoSIMS), we tracked the flow of photosynthetic fixed carbon and consequent bacterial biomass synthesis under continuous and diel light with single-cell resolution. We found that more 13C fixed by the alga was taken up by bacterial cells under continuous light, invalidating the hypothesis that the alga's fermentative degradation of starch reserves during the night would boost M. japonicum heterotrophy. 15NH4 assimilation rates and changes in cell size revealed that the carbon transferred was insufficient for balanced growth of M. japonicum cells, which instead underwent reductive division. However, despite this sign of starvation, M. japonicum still supported a B12-dependent C. reinhardtii mutant. Finally, we showed that bacterial proliferation could be supported solely by the algal lysis that occurred in coculture, highlighting the role of necromass in carbon cycling. Collectively, these results reveal the scarcity of fixed carbon in this microbial trophic relationship, demonstrate B12 exchange even during bacterial starvation, and underscore the importance of quantitative approaches for assessing metabolic coupling in algal-bacterial interactions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要