Small variation induces a big difference: the effect of polymerization kinetics of graphitic carbon nitride on its photocatalytic activity.

Dalton Transactions(2024)

引用 0|浏览17
暂无评分
摘要
Graphitic carbon nitride (g-CN) has emerged as a promising visible-light-responsive photocatalyst, and its activity is highly sensitive to synthesis conditions. In this work, we attempt to correlate the photocatalytic activity of g-CN with its production yield, which is kinetically determined by the specific condensation process. Bulk g-CN samples were synthesized by the conventional condensation procedure, but in static air and flowing air, respectively. The one synthesized in static air showed a lower production yield with an increased specific surface area and preferential surface chemical states, corresponding to a significantly improved activity for photocatalytic hydrogen evolution (PHE) and dye degradation. We further synthesized a series of g-CN samples by merely changing the synthetic atmosphere, the ramping rate, and the loading amount of the precursor, and the difference in their PHE performance was found to be as high as 7.05 times. The notable changes in their production yields as well as the photocatalytic activities have been discussed from the point of view of polymerization reaction kinetics, and the self-generated NH3 atmosphere plays a crucial role.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要