Fission decay modes of 254Fm* compound nucleus formed in 16O+238U reaction

Kaur Amandeep, Sharma Manoj K.

EPJ Web of Conferences(2023)

引用 0|浏览0
暂无评分
摘要
The quantum mechanical fragmentation theory (QMFT) based dynamical cluster-decay model (DCM) is applied to analyze the probable fission decay modes of 254Fm* compound nucleus produced in 16O+238U nuclear reaction at excitation energy EC*N =45.9 MeV. The fission valley of collective fragmentation potential and the multi-humped peaks of preformation probability P0 profile are analyzed by considering compact as well as elongated configurations of quadrupole (β2) deformed fragments. The competitive emergence of different symmetric [symmetric superlong (SL), symmetric supershort (SS)] and asymmetric [standard 1 (S1), standard 2 (S2), standard 3 (S3)] fission modes have been observed for the case of elongated configuration. The division of mass and charge in nuclear fission of 254Fm* depicts the importance of spherical and deformed magic shell closures. The most energetic light (AL and heavy (AH) decay fragments of aforementioned fission modes are identified. Moreover, the DCM-calculated fission cross-sections (σ fission) show reasonable agreement with the experimental measurements [24].
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要