Fluid escape from subduction zones controlled by channel-forming reactive porosity

Nature Geoscience(2017)

引用 140|浏览3
暂无评分
摘要
Water within the oceanic lithosphere is returned to Earth’s surface at subduction zones. Observations of metamorphosed veins preserved in exhumed slabs suggest that fluid can escape via channel networks. Yet, it is unclear how such channels form that allow chemically bound water to escape the subducting slab as the high pressures during subduction reduce the porosity of rocks to nearly zero. Here we use multiscale rock analysis combined with thermodynamic modelling to show that fluid flow initiation in dehydrating serpentinites is controlled by intrinsic chemical heterogeneities, localizing dehydration reactions at specific microsites. Porosity generation is directly linked to the dehydration reactions and resultant fluid pressure variations force the reactive fluid release to organize into vein networks across a wide range of spatial scales (μm to m). This fluid channelization results in large-scale fluid escape with sufficient fluxes to drain subducting plates. Moreover, our findings suggest that antigorite dehydration reactions do not cause instantaneous rock embrittlement, often presumed as the trigger of intermediate-depth subduction zone seismicity. Pressure during subduction is thought to reduce porosity and restrict water escape from the slab. Thermodynamic modelling shows that channel networks, which grow around local chemical heterogeneities, can help drain the subducting plate.
更多
查看译文
关键词
Geochemistry,Geology,Mineralogy,Petrology,Solid Earth sciences,Earth Sciences,general,Geophysics/Geodesy,Earth System Sciences
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要