Chrome Extension
WeChat Mini Program
Use on ChatGLM

State of the Art and New Technologies to Recycle the Fertigation Effluents in Closed Soilless Cropping Systems Aiming to Maximise Water and Nutrient Use Efficiency in Greenhouse Crops

Dimitrios Savvas, Evangelos Giannothanasis, Theodora Ntanasi, Ioannis Karavidas, Georgia Ntatsi

AGRONOMY-BASEL(2024)

Cited 0|Views3
No score
Abstract
Inappropriate fertilisation results in the pollution of groundwater with nitrates and phosphates, eutrophication in surface water, emission of greenhouse gasses, and unwanted N deposition in natural environments, thereby harming the whole ecosystem. In greenhouses, the cultivation in closed-loop soilless culture systems (CLSs) allows for the collection and recycling of the drainage solution, thus minimising contamination of water resources by nutrient emissions originating from the fertigation effluents. Recycling of the DS represents an ecologically sound technology as it can reduce water consumption by 20-35% and fertiliser use by 40-50% in greenhouse crops, while minimising or even eliminating losses of nutrients, thereby preventing environmental pollution by NO3- and P. The nutrient supply in CLSs is largely based on the anticipated ratio between the mass of a nutrient absorbed by the crop and the volume of water, expressed as mmol L-1, commonly referenced to as "uptake concentration" (UC). However, although the UCs exhibit stability over time under optimal climatic conditions, some deviations at different locations and different cropping stages can occur, leading to the accumulation or depletion of nutrients in the root zone. Although these may be small in the short term, they can reach harmful levels when summed up over longer periods, resulting in serious nutrient imbalances and crop damage. To prevent large nutrient imbalances in the root zone, the composition of the supplied nutrient solution must be frequently readjusted, taking into consideration the current nutrient status in the root zone of the crop. The standard practice to estimate the current nutrient status in the root zone is to regularly collect samples of drainage solution and determine the nutrient concentrations through chemical analyses. However, as results from a chemical laboratory are available several days after sample selection, there is currently intensive research activity aiming to develop ion-selective electrodes (ISEs) for online measurement of the DS composition in real-time. Furthermore, innovative decision support systems (DSSs) fed with the analytical results transmitted either offline or online can substantially contribute to timely and appropriate readjustments of the nutrient supply using as feedback information the current nutrient status in the root zone. The purpose of the present paper is to review the currently applied technologies for nutrient and water recycling in CLSs, as well as the new trends based on ISEs and novel DSSs. Furthermore, a specialised DSS named NUTRISENSE, which can contribute to more efficient management of nutrient supply and salt accumulation in closed-loop soilless cultivations, is presented.
More
Translated text
Key words
closed-loop soilless culture,drainage solution,water recycling,nutrient recirculation,decision support systems,NUTRISENSE
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined