Flow Characteristics of Liquid Jet in Transverse Shear Crossflow

Aerospace(2024)

引用 0|浏览0
暂无评分
摘要
The numerical simulation method was used to investigate the deflection and deformation process of a circular lubricating oil jet in transverse shear airflow. The numerical model was compared and validated against the experimental data. The physical parameters of Mobil jet Oil II were utilized in this simulation with the nozzle diameter ranging from 0.5 to 2.5 mm, the maximum liquid/gas momentum ratios varying from 10.35 to 165.50, and the injection angle ranging from 0 to 30 degrees in the opposite airflow direction. The results show that an increase in the nozzle diameter decreases the degree of jet deflection. The higher airflow velocity causes more fluctuations in the oil-jet trajectory, while the higher oil-injection velocity reduces fluctuations in the trajectory. The parabolic curve equations were used to derive the trajectory equations for the jet column's pre-disintegration under both vertical incidence and a small angle of reverse airflow. The nozzle diameter and maximum oil/air momentum ratio were used to obtain a formula for the trajectory curve of the lubricating oil. Additionally, a formula for fitting the trajectory curve of oil injected in the opposite airflow direction regarding the injection angle was developed.
更多
查看译文
关键词
crossflow,injection angle,liquid trajectory,numerical simulation,two-phase flow
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要