Introducing cerium into TiO2@MnOx hollow-sphere structure for highly active photothermocatalysis degradation of ethyl acetate and NO under H2O at low temperature

Journal of Rare Earths(2023)

引用 0|浏览4
暂无评分
摘要
The CeO2-TiO2@MnOx catalyst was prepared by the co-precipitation method and applied to the photothermocatalysis system of ethyl acetate and NO simultaneous degradation under H2O at low temperature, which introduced Ce into TiO2@MnOx hollow sphere structure. The optimum TiO2/MnOx ratio and Ce introducing amount were obtained in the process. Among of them, the NO and ethyl acetate conversion percentage of TiO2@MnOx (nMn:nTi = 40:40) is 74% and 62% at 240 °C, respectively. CeO2-TiO2@MnOx (nMn-Ti:nCe = 1:1) exhibits the best catalytic performance, its efficiency for NO conversion is 83% and the conversion of ethyl acetate reaches 72% at 240 °C. In addition, it is confirmed that the Ce-doped nanocomposites have more uniform dispersion through various characterization and analysis methods. Meanwhile, these catalysts have a large specific surface area as well as a large number of surface-active oxygen and oxygen vacancies. It can further improve the catalytic performance based on the adjusted ratio of active components. Moreover, this work investigated the relationship between multi-metal interactions and catalytic performance in the presence of H2O. Finally, the possible reaction pathways for the simultaneous removal of NO and ethyl acetate were explored in our system.
更多
查看译文
关键词
Photothermocatalysis,Ethyl acetate,NO,Low temperature,H2O,Rare earths
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要