Fabrication of gelatin coated polycaprolactone nanofiber scaffolds co-loaded with luliconazole and naringenin for treatment of Candida infected diabetic wounds

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES(2024)

引用 0|浏览2
暂无评分
摘要
The current study focuses on the development of gelatin-coated polycaprolactone (PCL) nanofibers co-loaded with luliconazole and naringenin for accelerated healing of infected diabetic wounds. Inherently, PCL nanofibers have excellent biocompatibility and biodegradation profiles but lack bioadhesion characteristics, which limits their use as dressing materials. So, coating them with a biocompatible and hydrophilic material like gelatin can improve bioadhesion. The preparation of nanofibers was done with the electrospinning technique. The solid state characterization and in-vitro performance assessment of nanofibers indicate the formation of uniformly interconnected nanofibers of 200-400 nm in diameter with smooth surface topography, excellent drug entrapment, and a surface pH of 5.6-6.8. The antifungal study showed that the nanofiber matrix exhibits excellent biofilm inhibition activity against several strains of Candida. Further, in-vivo assessment of nanofiber performance on C. albicans infected wounds in diabetic rats indicated accelerated wound healing efficacy in comparison to gauge-treated groups. Additionally, a higher blood flow and rapid re-epithelialization of wound tissue in the treatment group corroborated with the results obtained in the wound closure study. Overall, the developed dual-drug-loaded electrospun nanofiber mats have good compatibility, surface properties, and excellent wound healing potential, which can provide an extra edge in the management of complex diabetic wounds.
更多
查看译文
关键词
Luliconazole,Drug delivery,Nanofiber
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要