Mechanistic cycle aging model for the open-circuit voltage curve of lithium-ion batteries

JOURNAL OF POWER SOURCES(2024)

Cited 0|Views22
No score
Abstract
Cycling lithium-ion batteries causes capacity fade, but also changes the shape of the open-circuit voltage (OCV) curve, due to loss of active material (LAM) and loss of lithium inventory (LLI). To model this change, we recently proposed a novel empirical calendar aging model that is parameterized on component states of health (SOHs) instead of capacity fade only. In this work, we present a mechanistic aging model for cycle aging, allowing prediction of capacity fade, OCV curve change and component degradation. The model is parameterized on cycling data of 59 commercial lithium-ion batteries with NCA cathode and silicon-graphite anode, which were cycled for 2500 equivalent full cycles under varying conditions. We propose a stepwise approach to identify the most relevant stress parameters causing LLI and LAM, where we also separate between loss of accessible graphite and silicon in the blend anode. Stress parameter dependence is modeled with linear combinations of exponential functions and the model predicts capacity fade with 1.04% mean absolute error (MAE). For all test conditions, LLI is the dominating degradation mode and loss of accessible graphite is negligible. Reconstructed OCV curves reduce the median voltage MAE by a factor of 8, compared to not updating the OCV.
More
Translated text
Key words
Cycle aging,Semi-empirical model,Half-cell fitting,Degradation modes,OCV aging,Hidden degradation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined