Graphene-based optically transparent metasurface for microwave and terahertz cross-band stealth utilizing multiple stealth strategies

CARBON(2024)

引用 0|浏览8
暂无评分
摘要
Stealth, as a miraculous physical phenomenon, has received widespread attention from the scientific and engineering communities for a long time. Optically transparent stealth devices are of significant importance for the stealth capabilities of aircraft windshields and solar panels. However, the current stealth implementations are limited to a single frequency band due to the strong dispersion of passive materials so that cross -band stealth still remains challenging. In this paper, a novel cross-wavelength stealth strategy is proposed based on multi-layer graphene transparent metasurface, which achieves stealth both in microwave and terahertz frequency bands. Strong resonance is designed to achieve high absorption in the microwave band and diffuse scattering is employed for RCS reduction in the terahertz band. Materials such as graphene and ITO are employed to achieve optical transparency and flexibility of the metasurface. The above design is implemented using numerical simulations and experiments, and the results are in good agreements. This design method that integrates multiple stealth strategies opens up a new approach for cross -band stealth, with potential applications in countering advanced electromagnetic detection.
更多
查看译文
关键词
Cross-band stealth,Optically transparent,Metasurface,Graphene
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要