Enhanced charge capacity and stability of Germanium(IV) Sulfide-Based anodes through Triton X100-Assisted synthesis and polysulfide shuttle mitigation

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2024)

引用 0|浏览2
暂无评分
摘要
Highly soluble germanium oxide, an amorphous macroreticular form of germanium oxide, was used as a precursor for the deposition of GeS2 on reduced graphene oxide (rGO) through a low-temperature, wet-chemistry process. Thermal treatment of the solid provided an ultrathin rGO - supported amorphous GeS2 coating. The GeS2@rGO composite was tested as a lithium ion battery (LIB) anode. Leveraging the versatility of wet chemistry processing, we employed strategies initially developed for mitigating polysulfide shuttle effects in lithium-sulfur batteries to enhance anode performance. The anode exhibited exceptional stability, surpassing 1000 cycles, with charge capacities exceeding 1220 and 870 mAh.g 1 at rates of 2 and 5 A.g- 1, respectively. Performance improvements were achieved by minimizing GeS2 grain size using the non-ionic surfactant Triton X-100 during synthesis and preventing polysulfide shuttle effects through a negatively charged thick glass fiber separator, fluoroethylene carbonate additive (FEC) in EC:DEC (ethylene carbonate: diethyl carbonate) solvent, and a polyacrylic acid (PAA) binder. These cumulative modifications more than tripled the charge capacity of the germanium sulfide LIB anode. Feasibility was further demonstrated through full cell studies using a LiCoO2 counter electrode.
更多
查看译文
关键词
Germanium sulfide,Lithium-ion battery,Polysulfides,Polysulfides shuttle effects
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要