Breaking bad nucleotides: understanding the regulatory mechanisms of bacterial small alarmone hydrolases

Trends in microbiology(2024)

Cited 0|Views3
No score
Abstract
Guanosine tetra- and pentaphosphate nucleotides, (p)ppGpp, function as central secondary messengers and alarmones in bacterial cell biology, signalling a range of stress conditions, including nutrient starvation and exposure to cell-wall-targeting antibiotics, and are critical for survival. While activation of the stringent response and alarmone synthesis on starved ribosomes by members of the RSH (Rel) class of proteins is well understood, much less is known about how single-domain small alarmone synthetases (SASs) and their corresponding alarmone hydrolases, the small alarmone hydrolases (SAHs), are regulated and contribute to (p)ppGpp homeostasis. The substrate spectrum of these enzymes has recently been expanded to include hyperphosphorylated adenosine nucleotides, suggesting that they take part in a highly complex and interconnected signalling network. In this review, we provide an overview of our understanding of the SAHs and discuss their structure, function, regulation, and phylogeny.
More
Translated text
Key words
stringent response,pppGpp,ppGpp,secondary messenger
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined