A tungsten phosphide cocatalyst enhanced bismuth tungstate photoanode with the robust built-in electric field towards highly efficient photoelectrochemical water splitting

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2024)

引用 0|浏览4
暂无评分
摘要
The use of low-cost and effective cocatalyst is a potential strategy to optimize the effectiveness of photoelectrochemical (PEC) water splitting. In this study, tungsten phosphide (WP) is introduced as a remarkably active cocatalyst to enhance the PEC efficiency of a Bi2WO6 photoanode. The onset potential of Bi2WO6/WP demonstrates a negative shift, while the photocurrent density demonstrates a significant 5.5-fold increase compared to that of unmodified Bi2WO6 at 1.23 VRHE (reversible hydrogen electrode). The loading of WP cocatalyst facilitates the rapid transfer of holes, increasing the range of visible light absorption, the water adsorption ability as well as promoting the separation of photogenerated electrons and holes via the built-in electric field between Bi2WO6 and WP. This study proposes a strategy to hinder the recombination of electron-hole pairs by using WP cocatalyst as a hole capture agent, improve the photoelectric conversion efficiency, and enhance the overall photoelectrochemical properties of Bi2WO6 photoanode.
更多
查看译文
关键词
Photoelectrochemical water splitting,Built-in electric field,Cocatalyst,Bi2WO6
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要