A Unified Generation-Registration Framework for Improved MR-based CT Synthesis in Proton Therapy

arxiv(2024)

Cited 0|Views34
No score
Abstract
Background: In MR-guided proton therapy planning, aligning MR and CT images is key for MR-based CT synthesis, especially in mobile regions like the head-and-neck. Misalignments here can lead to less accurate synthetic CT (sCT) images, impacting treatment precision. Purpose: This study introduces a novel network that cohesively unifies image generation and registration processes to enhance the quality and anatomical fidelity of sCTs derived from better-aligned MR images. Methods: The approach synergizes a generation network (G) with a deformable registration network (R), optimizing them jointly in MR-to-CT synthesis. This goal is achieved by alternately minimizing the discrepancies between the generated/registered CT images and their corresponding reference CT counterparts. The generation network employs a UNet architecture, while the registration network leverages an implicit neural representation of the Deformable Vector Fields (DVFs). We validated this method on a dataset comprising 60 Head-and-Neck patients, reserving 12 cases for holdout testing. Results: Compared to the baseline Pix2Pix method with MAE 124.95\pm 30.74 HU, the proposed technique demonstrated 80.98\pm 7.55 HU. The unified translation-registration network produced sharper and more anatomically congruent outputs, showing superior efficacy in converting MR images to sCTs. Additionally, from a dosimetric perspective, the plan recalculated on the resulting sCTs resulted in a remarkably reduced discrepancy to the reference proton plans. Conclusions: This study conclusively demonstrates that a holistic MR-based CT synthesis approach, integrating both image-to-image translation and deformable registration, significantly improves the precision and quality of sCT generation, particularly for the challenging body area with varied anatomic changes between corresponding MR and CT.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined