Low-Scaling Algorithms for GW and Constrained Random Phase Approximation Using Symmetry-Adapted Interpolative Separable Density Fitting

JOURNAL OF CHEMICAL THEORY AND COMPUTATION(2024)

引用 0|浏览0
暂无评分
摘要
We present low-scaling algorithms for GW and constrained random phase approximation based on a symmetry-adapted interpolative separable density fitting (ISDF) procedure that incorporates the space-group symmetries of crystalline systems. The resulting formulations scale cubically, with respect to system size, and linearly with the number of k-points, regardless of the choice of single-particle basis and whether a quasiparticle approximation is employed. We validate these methods through comparisons with published literature and demonstrate their efficiency in treating large-scale systems through the construction of downfolded many-body Hamiltonians for carbon dimer defects embedded in hexagonal boron nitride supercells. Our work highlights the efficiency and general applicability of ISDF in the context of large-scale many-body calculations with k-point sampling beyond density functional theory.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要