Dynamical invariant based shortcut to equilibration in open quantum systems

Mohamed Boubakour, Shimpei Endo,Thomás Fogarty,Thomas Busch

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
We propose using the dynamical invariant also known as the Lewis-Riesenfeld invariant, to speed-up the equilibration of a driven open quantum system. This allows us to reverse engineer the time-dependent master equation that describes the dynamics of the open quantum system and systematically derive a protocol that realizes a shortcut to equilibration. The method does not require additional constraints on the timescale of the dynamics beside the Born-Markov approximation and can be generically applied to boost single particle quantum engines significantly. We demonstrate it with the damped harmonic oscillator, and show that our protocol can achieve a high-fidelity control in shorter timescales than simple non-optimized protocols. We find that the system is heated during the dynamics to speed-up the equilibration, which can be considered as an analogue of the Mpemba effect in quantum control.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要