Neomangiferin, a Naturally Occurring Mangiferin Congener, Inhibits Sodium-Glucose Co-transporter-2: An In silico Approach

Ayobami J. Olusola,Samson O. Famuyiwa,Kolade O. Faloye, Oluwaseun E. Olatunji, Uduak Olayemi, Abiodun A. Adeyemi, John O. Balogun, Seun B. Ogundele, Blessing O. Babamuyiwa,Rajesh B. Patil

Bioinformatics and biology insights(2024)

引用 0|浏览0
暂无评分
摘要
Type 2 diabetes is a major health concern contributing to most of diabetic cases worldwide. Mangiferin and its congeners are known for their diverse pharmacological properties. This study sought to investigate the inhibitory property of naturally occurring mangiferin congeners on sodium-glucose co-transporter 2 protein (SGLT-2) using comprehensive computational methods. The naturally occurring mangiferin congeners were subjected to molecular docking, molecular dynamics (MDs) simulation (100 ns), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy, density functional theory calculations (B3LYP 6-31G basis set), and ADMET approaches to identify potential SGLT-2 inhibitor. The molecular docking studies revealed neomangiferin (-9.0 kcal/mol) as the hit molecule compared with dapagliflozin (-8.3 kcal/mol). Root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) plots from the MD simulations established that neomangiferin stabilizes SGLT-2 better than the dapagliflozin, a standard drug. The MM-PBSA binding free energy calculations showed that neomangiferin (-26.05 kcal/mol) elicited better binding affinity than dapagliflozin (-17.42 kcal/mol). The electronic studies showed that neomangiferin (3.48 eV) elicited high electrophilicity index compared with mangiferin (3.31 eV) and dapagliflozin (2.11 eV). Also, the ADMET properties showed that the hit molecule is safe when administered to diabetic subjects. The current in silico studies suggest that neomangiferin could emerge as a promising lead molecule as a SGLT-2 inhibitor.
更多
查看译文
关键词
Mangiferin congeners,sodium-glucose co-transporter 2 protein,molecular docking,molecular dynamics simulation,density functional theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要