An Experimental Study on the Verification of Structural and Seismic Performance of Steel Composite Walls

Youn-Sang Kwon,Sun-Hee Kim,Se-Jung Lee, Kyung-Soo Chung,Sung-Mo Choi

International Journal of Steel Structures(2024)

引用 0|浏览5
暂无评分
摘要
In the context of steel composite wall (SC wall) standards, this study explores the relaxed provisions outlined in AISC N690 (2018), particularly concerning commonly used materials in general building construction, such as faceplate thickness, concrete strength, shear connector spacing, and steel tie spacing. These provisions were then applied to assess the viability of a “relaxed steel composite wall” as a seismic force-resisting system suitable for mid- and low-rise structures. Experimental investigations were conducted to achieve these objectives. A dedicated SC wall specimen was constructed, and various variables were examined, including the presence or absence of shear connectors, shear connector spacing, steel tie spacing, and faceplate types. The results were analyzed to assess fracture behavior, the relationship between shear force (V) and transverse displacement (Δ), shear stiffness variations, maximum in-plane shear strength, displacement ductility ratio (μ), and energy dissipation characteristics. Moreover, their displacement ductility ratios remained below 10, and they exhibited substantial energy dissipation capabilities. These findings suggest that the application of “relaxed SC walls” as seismic force-resisting systems is feasible for mid-, low-, and high-rise structures.
更多
查看译文
关键词
SC section thickness (tsc),Faceplate thickness (tp),In-Plane Shear Strength,Displacement ductility ratio,Energy dissipation capacity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要