Optoacoustic entanglement in a continuous Brillouin-active solid state system

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Entanglement in hybrid quantum systems comprised of fundamentally different degrees of freedom, such as light and mechanics is of interest for a wide range of applications in quantum technologies. Here, we propose to engineer bipartite entanglement between traveling acoustic phonons in a Brillouin active solid state system and the accompanying light wave. The effect is achieved by applying optical pump pulses to state-of-the-art waveguides, exciting a Brillouin Stokes process. This pulsed approach, in a system operating in a regime orthogonal to standard optomechanical setups, allows for the generation of entangled photon-phonon pairs, resilient to thermal fluctuations. We propose an experimental platform where readout of the optoacoustics entanglement is done by the simultaneous detection of Stokes and Anti-Stokes photons in a two-pump configuration. The proposed mechanism presents an important feature in that it does not require initial preparation of the quantum ground state of the phonon mode.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要