谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Manipulation of the rhizosphere bacterial community by biofertilizers is associated with mitigation of cadmium phytotoxicity.

Science of The Total Environment(2019)

引用 53|浏览26
暂无评分
摘要
The objective of this study was to understand the effect of biofertilizers on cadmium (Cd)-induced phytotoxicity and the rhizosphere bacterial community. The crop specie rice (Oryza sativa L.) was planted in Cd-contaminated soils, and Illumina high-throughput sequencing was performed to investigate how the composition of the rhizosphere bacterial community responded to the addition of biofertilizers. Biofertilizers were effective in alleviating Cd phytotoxicity as indicated by the significant increase in plant biomass (up to 85.2% and 48.4% for roots and shoots, respectively) and decrease in tissue Cd concentration (up to 72.2% in roots) of rice receiving fertilizer treatments compared with the CK (no treatment). These positive effects were likely due to the increase in soil pH, which can be attributed primarily to Cd immobilization, and the promotion of beneficial taxa such as Proteobacteria, Bacteroidetes, Gemmatimonadetes, and Firmicutes. In addition, autoclaved biofertilizers tended to have similar beneficial effects and similar bacterial community alpha diversities as the original biofertilizer treatments. This suggests that the change in soil physicochemical properties by biofertilizer addition might drive the structure of rhizosphere bacterial community, and not the biofertilizer microbes themselves. In both the original and sterilized biofertilizer treatments, the effectiveness in mitigating of Cd phytotoxicity was found to be dependent on the type of biofertilizer applied. Comparatively, the biofertilizer denoted as DY was more effective in mitigating Cd phytotoxicity than others. These results demonstrate that biofertilizer addition could be a promising approach to immobilize soil Cd by manipulating the rhizosphere bacterial community, thus to facilitate plant growth.
更多
查看译文
关键词
Cadmium,Biofertilizer,Rhizosphere,Bacterial community,Remediation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要