谷歌浏览器插件
订阅小程序
在清言上使用

Adaptive Bayesian information borrowing methods for finding and optimizing subgroup-specific doses.

Clinical trials (London, England)(2024)

引用 0|浏览11
暂无评分
摘要
In precision oncology, integrating multiple cancer patient subgroups into a single master protocol allows for the simultaneous assessment of treatment effects in these subgroups and promotes the sharing of information between them, ultimately reducing sample sizes and costs and enhancing scientific validity. However, the safety and efficacy of these therapies may vary across different subgroups, resulting in heterogeneous outcomes. Therefore, identifying subgroup-specific optimal doses in early-phase clinical trials is crucial for the development of future trials. In this article, we review various innovative Bayesian information-borrowing strategies that aim to determine and optimize subgroup-specific doses. Specifically, we discuss Bayesian hierarchical modeling, Bayesian clustering, Bayesian model averaging or selection, pairwise borrowing, and other relevant approaches. By employing these Bayesian information-borrowing methods, investigators can gain a better understanding of the intricate relationships between dose, toxicity, and efficacy in each subgroup. This increased understanding significantly improves the chances of identifying an optimal dose tailored to each specific subgroup. Furthermore, we present several practical recommendations to guide the design of future early-phase oncology trials involving multiple subgroups when using the Bayesian information-borrowing methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要