Data-model linkage prediction of tool remaining useful life based on deep feature fusion and Wiener process

JOURNAL OF MANUFACTURING SYSTEMS(2024)

Cited 0|Views27
No score
Abstract
Accurately predicting the tool remaining useful life (RUL) is critical for maximizing tool utilization and saving machining costs. Various physical model-based or data-driven prediction methods have been developed and successfully applied in different machining operations. However, many uncertain factors affect tool RUL during the cutting process, making it challenging to create a precise physical model to characterize the degradation of tool performance. The success of the purely data-driven technique depends on the amount and quality of the training samples, it does not consider the physical law of tool wear, and the interpretability of the prediction results is poor. This paper presents a data-model linkage approach for tool RUL prediction based on deep feature fusion and Wiener process to address the above limitations. A convolutional stacked bidirectional long short-term memory network with time-space attention mechanism (CSBLSTM-TSAM) is developed in the data-driven module to fuse the multi-sensor signals collected during the cutting process and then obtain the mapping relationship between signal features and tool wear values. In the physical modeling module, a three-stage tool RUL prediction model based on the nonlinear Wiener process is established by considering the evolution law of different wear stages and multi-layer uncertainty, and the corresponding probability density function is derived. The real-time estimated tool wear of the data-driven module is used as the observed value of the physical model, and the model parameters are dynamically updated by the weight-optimized particle filter (WOPF) algorithm under a Bayesian framework, thereby realizing the data-model linkage tool RUL prediction. Milling experiments demonstrate that the proposed method not only improves RUL prediction accuracy, but also has good generalization ability and robustness for prediction tasks under different working conditions.
More
Translated text
Key words
Remaining useful life prediction,Tool wear,Data -model linkage,Feature fusion,Wiener process,Weight-optimized particle filter
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined