Heterogeneous integration of high-k complex-oxide gate dielectrics on wide band-gap high-electron-mobility transistors

Communications Engineering(2024)

引用 0|浏览5
暂无评分
摘要
Heterogeneous integration of dissimilar crystalline materials has recently attracted considerable attention due to its potential for high-performance multifunctional electronic and photonic devices. The conventional method for fabricating heterostructures is by heteroepitaxy, in which epitaxy is performed on crystallographically different materials. However, epitaxial limitations in monolithic growth of dissimilar materials prevent implementation of high quality heterostructures, such as complex-oxides on conventional semiconductor platforms (Si, III-V and III-N). In this work, we demonstrate gallium nitride (GaN) high-electron-mobility transistors with crystalline complex-oxide material enabled by heterogeneous integration through epitaxial lift-off and direct stacking. We successfully integrate high-κ complex-oxide SrTiO 3 in freestanding membrane form with GaN heterostructure via a simple transfer process as the gate oxide. The fabricated device shows steep subthreshold swing close to the Boltzmann limit, along with negligible hysteresis and low dynamic on-resistance, indicating very low defect density between the SrTiO 3 gate oxide and GaN heterostructure. Our results show that heterogeneous integration through direct material stacking is a promising route towards fabricating functional heterostructures not possible by conventional epitaxy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要