谷歌Chrome浏览器插件
订阅小程序
在清言上使用

A desthiobiotin labelled NAD+ analogue to uncover Poly(ADP-ribose) polymerase 1 protein targets.

Sonja Rieth, Daniel Spliesgar, Jan Orth, Maike Lehner,Renata Kasprzyk,Florian Stengel,Andreas Marx

Chembiochem : a European journal of chemical biology(2024)

引用 0|浏览6
暂无评分
摘要
ADP-ribosylation is a post-translational modification catalyzed by the enzyme family of polyadenosine diphosphate (ADP)-ribose) polymerases (PARPs). This enzymatic process involves the transfer of single or multiple ADP-ribose molecules onto proteins, utilizing nicotinamide adenine dinucleotide (NAD+ ) as a substrate. It, thus, plays a pivotal role in regulating various biological processes. Unveiling PARP-selective protein targets is crucial for a better understanding of their biological functions. Nonetheless, this task proves challenging due to overlapping targets shared among PARP family members. Therefore, we applied the "bump-and-hole" strategy to modify the nicotinamide binding site of PARP1 by introducing a hydrophobic pocket ("hole"). This PARP1-mutant binds an orthogonal NAD+ (Et-DTB-NAD+ ) containing an ethyl group ("bump") at the nicotinamide moiety. Furthermore, we added a desthiobiotin (DTB) tag directly to the adenosine moiety, enabling affinity enrichment of ADP-ribosylated proteins. Employing this approach, we successfully identified protein targets modified by PARP1 in cell lysate. This strategy expands the arsenal of chemically modified NAD+ analogs available for studying ADP-ribosylation, providing a powerful tool to study these critical post-translational modifications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要