High-performance magnetic metal microrobot prepared by a two-photon polymerization and sintering method

LAB ON A CHIP(2024)

引用 0|浏览11
暂无评分
摘要
Magnetically-actuated microrobots (MARs) exhibit great potential in biomedicine owing to their precise navigation, wireless actuation and remote operation in confined space. However, most previously explored MARs unfold the drawback of hypodynamic magnetic torque due to low magnetic content, leading to their limited applications in controlled locomotion in fast-flowing fluid and massive cargo carrying to the target position. Here, we report a high-performance pure-nickel magnetically-actuated microrobot (Ni-MAR), prepared by a femtosecond laser polymerization followed by sintering method. Our Ni-MAR possesses a high magnetic content (similar to 90 wt%), thus resulting in enhanced magnetic torque under low-strength rotating magnetic fields, which enables the microrobot to exhibit high-speed swimming and superior cargo carrying. The maximum velocity of our Ni-MAR, 12.5 body lengths per second, outperforms the velocity of traditional helical MARs. The high-speed Ni-MAR is capable of maintaining controlled locomotion in fast-flowing fluid. Moreover, the Ni-MAR with massive cargo carrying capability can push a 200-times heavier microcube with translation and rotation motion. A single cell and multiple cells can be transported facilely by a single Ni-MAR to the target position. This work provides a scheme for fabricating high-performance magnetic microrobots, which holds great promise for targeted therapy and drug delivery in vivo. A high-performance pure-nickel magnetically-actuated microrobot (Ni-MAR) is printed by a 'femtosecond laser polymerization + sintering' method with great potential applications in controlled locomotion in fast-flowing blood and massive drugs delivery.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要