Differential pathogenic and molecular features in neurological infection of SARS-CoV-2 Omicron BA.5.2 and BA.2.75 and Delta

JOURNAL OF MEDICAL VIROLOGY(2024)

引用 0|浏览4
暂无评分
摘要
The Coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global threat, exacerbated by the emergence of viral variants. Two variants of SARS-CoV-2, Omicron BA.2.75 and BA.5, led to global infection peaks between May 2022 and May 2023, yet their precise characteristics in pathogenesis are not well understood. In this study, we compared these two Omicron sublineages with the previously dominant Delta variant using a human angiotensin-converting enzyme 2 knock-in mouse model. As expected, Delta exhibited higher viral replication in the lung and brain than both Omicron sublineages which induced less severe lung damage and immune activation. In contrast, the Omicron variants especially BA.5.2 showed a propensity for cellular proliferation and developmental pathways. Both Delta and BA.5.2 variants, but not BA.2.75, led to decreased pulmonary lymphocytes, indicating differential adaptive immune response. Neuroinvasiveness was shared with all strains, accompanied by vascular abnormalities, synaptic injury, and loss of astrocytes. However, Immunostaining assays and transcriptomic analysis showed that BA.5.2 displayed stronger immune suppression and neurodegeneration, while BA.2.75 exhibited more similar characteristics to Delta in the cortex. Such differentially infectious features could be partially attributed to the weakened interaction between Omicron Spike protein and host proteomes decoded via co-immunoprecipitation followed by mass spectrometry in neuronal cells. Our present study supports attenuated replication and pathogenicity of Omicron variants but also highlights their newly infectious characteristics in the lung and brain, especially with BA.5.2 demonstrating enhanced immune evasion and neural damage that could exacerbate neurological sequelae.
更多
查看译文
关键词
BA.2.75,BA.5.2,Delta,hACE2 knock-in mice,neurological dysfunction,SARS-CoV-2,Spike protein,gamma-secretase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要