Electrogelated drug-embedded silk/gelatin/rGO degradable electrode for anti-inflammatory applications in brain-implant systems

Zhen-Kai Lin, Jing-Syu Lin, Zih-Huei Chen,Hung-Wei Cheng,Wei-Chen Huang,San-Yuan Chen

JOURNAL OF MATERIALS CHEMISTRY B(2024)

引用 0|浏览4
暂无评分
摘要
Implantable electrodes have raised great interest over the last years with the increasing incidence of neurodegenerative disorders. For brain implant devices, some key factors resulting in the formation of glial scars, such as mechanical mismatch and acute injury-induced inflammation, should be considered for material design. Therefore, in this study, a new biocompatible flexible electrode (e-SgG) with arbitrary shapes on a positive electrode was developed via electrogelation by applying a direct electrical voltage on a silk fibroin/gelatin/reduced graphene oxide composite hydrogel. The implantable flexible e-SgG-2 film with 1.23% rGO content showed high Young's modulus (11-150 MPa), which was sufficient for penetration under dried conditions but subsequently became a biomimetic brain tissue with low Young's modulus (50-3200 kPa) after insertion in the brain. At the same time, an anti-inflammatory drug (DEX) incorporated into the e-SgG-2 film can be electrically stimulated to exhibit two-stage release to overcome tissue inflammation during cyclic voltammetry via degradation by applying an AC field. The results of cell response to the SF/gelatin/rGO/DEX composite film showed that the released DEX could interrupt astrocyte growth to reduce the inflammatory response but showed non-toxicity toward neurons, which demonstrated a great potential for the application of the biocompatible and degradable e-SgG-D electrodes in the improvement of nerve tissue repair. A degradable electrogel drug-embedded silk/gelatin/rGO/DEX composite implanted electrode showed tunable mechanical properties and electro-stimulated drug release to interrupt astrocyte growth and reduce inflammatory response for utilization in neural interfaces.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要