Overview and public data release of the Auriga Project: cosmological simulations of dwarf and Milky Way-mass galaxies

arxiv(2024)

引用 0|浏览6
暂无评分
摘要
We present an extended suite of the Auriga cosmological gravo-magnetohydrodynamical “zoom-in” simulations of 40 Milky Way-mass halos and 26 dwarf galaxy-mass halos run with the moving-mesh code Arepo. Auriga adopts the Λ Cold Dark Matter (ΛCDM) cosmogony and includes a comprehensive galaxy formation physics model following the coupled cosmic evolution of dark matter, gas, stars, and supermassive black holes which has been shown to produce numerically well-converged galaxy properties for Milky Way-mass systems. We describe the first public data release of this augmented suite of Auriga simulations, which includes raw snapshots, group catalogues, merger trees, initial conditions, and supplementary data, as well as public analysis tools with worked examples of how to use the data. To demonstrate the value and robustness of the simulation predictions, we analyse a series of low-redshift global properties that compare well with many observed scaling relations, such as the Tully-Fisher relation, the star-forming main sequence, and HI gas fraction/disc thickness. Finally, we show that star-forming gas discs appear to build rotation and velocity dispersion rapidly for z≳ 3 before they “settle” into ever-increasing rotation-dispersion ratios (V/σ). This evolution appears to be in rough agreement with some kinematic measurements from Hα observations, and demonstrates an application of how to utilise the released data.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要